An Attempt Towards A Chemical Conception Of The Aether

But at the present time, when there can be no doubt that the hydrogen group is preceded by the zero group composed of elements of less atomic weights, it seems to me impossible to deny the existence of elements lighter than hydrogen.

Let us first consider the element in the first series of the zero group. It is designated by y. It will evidently exhibit all the fundamental properties of the argon gases. But first we must have an approximate idea of its atomic weight. To do this, let us consider the ratio of the atomic weights of two elements belonging to the same group in the neighboring series.

Starting with Ce = 140 and Sn = 119 (here the ratio is 1.18), this ratio, in passing to the lower groups and series, increases constantly and fairly uniformly as the atomic weights of the elements under comparison decrease. But we will limit our calculation to the first and second series, starting with Cl = 85.45; for (1) we are exclusively concerned wit the lightest elements, (2) the ratio of the atomic weights is more accurate for these elements, and (3) the small periods of the typical elements (which should include the elements lighter than hydrogen) terminate with chlorine. As the atomic weight of chlorine is 35.45 and that of fluorine 19.0, the ratio Cl:F = 35.4:19.0 = 1.86; so also we find:

Group 
VII     Cl:F = 1.86 
VI     S:O = 2.00 
V     P:N = 2.21 
IV     Si:C = 2.37 
III     Al:B = 2.45 
II     Mg:Be = 2.67 
I     Na:Li = 3.28 
0     Ne:He = 4.98

This proves that the ratio in the given series distinctly and progressively increases in passing from the higher to the lower groups; and, moreover, that it varies most rapidly between the first and zero groups. It follows therefore that the ratio He:y will be considerably greater than the ratio Li:H which is 6.97, so that the ratio He:y will be at least 10 and probably even greater.

Hence, as the atomic ratio He = 4.0, the atomic weight of y will not be greater than 4.0/10 = 0.4 and probably less. Such an analog of helium may perhaps be founding coronium, whose spectrum, clearly visible in the solar corona above (that is, further from the sun than) that of hydrogen, is simple like that of helium, which seems to indicate that it belongs to a gas resembling helium, which was also predicted from its spectrum by Lockyer. Young and Harkness independently observed the spectrum of this unknown element during the solar eclipse of 1869. It is characterized by a bright-green line at 531.7 uu, while helium is characterized by a yellow line, 587 uu. Nasini, Anderlini, and Salvadori think that they discovered traces of coronium in their observations on the spectra of volcanic gases (1893).

And as the lines of coronium were also observed, even at distances many times the radius of the sun above its atmosphere and protuberances, where the hydrogen lines are no longer visible, it is evident that coronium should have less density and atomic weight than hydrogen. Moreover, as the ratio of the specific heats (at a constant pressure and for a constant volume) of helium, argon, and their analogs gives reason for thinking that their molecules (i.e., the amount of matter occupying, according to Avogadro-Gerhardt’s law, a volume equal to the volume of two parts by weight of hydrogen) contain only one atom  (like mercury, cadmium and most metals), it follows that, if 0.4 be the greatest atomic weight of the element y, its density referred to hydrogen should be less than 0.2.

Consequently the molecules of this gas will, according to the kinetic theory of gases, move 2.24 times faster than those of hydrogen, and if, as Stoney (1894-1898) and Rostovsky (1899) endeavor to prove, the progressive motion of the molecules of hydrogen and helium be such that they can leap out of the sphere of earth’s attraction, then a gas whose density is at least five times less than that of hydrogen could certainly only exist in the atmosphere of a body having as great a mass as the sun. However, this y-coronium or some other gas with a density of about 0.2 cannot possibly be ether, its density being too great. It wanders, perhaps for ages, in the regions of space, breaks from the shackles of the earth and again comes within its sphere, but still it cannot escape from the regions of the sun’s attraction, and there are many heavenly bodies of greater mass than the sun.

But the atoms of ether must be of another kind; they must be capable of overcoming even the sun’s attraction, of freely permeating all space, and of penetrating everything and everywhere. The element y, however, is necessary for us to be able to mentally realize the lightest and therefore swiftest element, x, which I consider may be looked upon as the ether.

We have seen that, besides the ordinary groups of the chemically active elements, a zero group of chemically inactive elements must now be recognized for helium, argon, and their analogs. Thanks to Ramsay’s exemplary researches, these elements are now tangible realities, authentic gases foreign to chemical association, that is, distinguished by their specific property of not being chemically attracted to each other or to other atoms even at infinitely small distances, and yet having weight, that is, subject to the law of attraction of mechanics, which has nothing in common with chemical attraction.

There is some hope that gravity may in some way or another be explained by means of pressure or impact acting from all sides, but chemical attraction, which only acts at infinitely small distances, will long remain an incomprehensible problem. The problem of the ether is more or less closely connected with that of gravity, and gains in simplicity when all question of the chemical attraction of the atoms of ether is excluded, and this is accomplished by placing it in the zero group.

But if the series of elements begins with series I containing hydrogen, the zero group has no place for an element lighter than y, like ether. I therefore add a zero series, besides a zero group, to the periodic system, and place the element x in this zero series, regarding it (1) as the lightest of all the elements both in density and atomic weight; (2) as the most mobile gas; (3) as the element least prone to enter into combination with other atoms, and (4) as an all-permeating and penetrating substance. Of course, this is a hypothesis, but it is not one constructed for purely ‘working’ ends, but simply from a desire to extend the real periodic system of the known elements to the confines or limits of the lowest dimensions of atoms, which I cannot and will not regard in the light of simple nullity called mass.

Being unable to conceive the formation of the known elements from hydrogen, I can neither regard them as being formed from the element x, although it is the lightest of all the elements. I cannot admit this, not only because no fact points to the possibility of the transformation of one element into another, but chiefly because I do not see that such an admission would in any way facilitate or simplify our understanding of the substances and phenomena of nature.

And when I am told that the doctrine of unity in the material of which the elements are built up responds to an aspiration for unity in all things, I can only reply that at the root of all things a distinction must be made between matter, force, and mind; that it is simpler to admit the germs of individuality in the material elements than elsewhere, and that no general relation is possible between things unless they have some individual character resident in them. In a word, I see no object in following the doctrine of unity of matter, while I clearly see the necessity of recognizing the unity of the substance of ether and of realizing a conception of it, as the uttermost limit of that process by whichall the other atoms of the elements were formed and by which all substances were formed from these atoms.

To me this kind of unity is far more real than any conception of the formation of the elements from a single primary matter. Neither gravity nor any of the problems of energy can be rightly understood without a real conception of the ether as a universal medium transmitting energy at a distance. Moreover, a real conception of ether cannot be obtained without recognizing its chemical nature as an elementary substance, and in these days no elementary substance is conceivable which is not subject to the periodic law.

I will therefore, in conclusion, endeavor to show what consequences should follow from the above conception of the ether, from an experimental or realistic point of view, even should it never be possible to isolate or combine or in any way grasp this substance.

Although it was possible to approximately determine the atomic weight of the element y on the basis of that of helium, this cannot be repeated for the element x, because it lies at the frontier or limit, about the zero point of the atomic weights. Moreover, the analogs of helium cannot serve as a basis owing to the uncertainty of their numerical data. However, if the ratio of the atomic weights be Xe:Kr = 1.56:1; Kr:Ar = 2.15:1, and Ar:He = 9.5:1, we find that He:x = 23.1:1, or if He = 4.9, that the atomic weight of x = 0.17. This must be considered the maximum possible value.

Most probably the atomic weight of x is far less, for the following reasons. If the gas in question be an analog of helium, its molecule will contain one atom, and therefore its density, referred to that of hydrogen, must be about half its atomic weight or x/2, where x is the atomic weight. In order to be able to permeate throughout all space, its density must be so small, compared with that of hydrogen, that its molecular motion would allow it to overcome the attraction, not only of the earth and sun, but also of all the stars, as otherwise it would accumulate about the largest mass and not fill all space.

The velocity of the molecular motion is determined by the number of impinging particles and their vis viva is calculated according to the kinetic theory of gases, by an expression containing a constant divided by the square root of the density of the gas and multiplied by the square root of (1 + at), which expresses the expansion of the gas by heat. In the case of hydrogen (density = 1) at t = 0°, the mean velocity of the particles, calculated on the basis that a liter of hydrogen at 0° and 760 mm weighs bout 0.09 grams, is 1843 meters/second, that of oxygen being 461 meters, for its density is 16 times that of hydrogen, i.e., v = 1843 / 4 = 461.

Thus the velocity increases as the density becomes less and as the temperature becomes greater, but does not depend upon the number of molecules in a given volume; and if our gas have an atomic weight x and density (referred to hydrogen) x/2, then the velocity of its molecules will be:

(I)     v = 1843 x sq. rt. 2(1 + at)/x

In this expression x is the unknown quantity, to find which we must know t and v, or the velocity required by the particles to escape from the sphere of the earth’s sun’s and stars’ attraction, like the projectile in Jules Verne’s ‘Voyage to the Moon’.

As regards the temperature of space, this can only be regarded as the absolute zero by those who deny the material nature of the ether, for temperature in a perfect vacuum or I space devoid of matter is an absurdity, and a solid such as an aerolite or thermometer introduced into such space would alter the temperature, not by contact with the surrounding medium, but solely by radiation.

But if space be filled with the substance of ether, it not only may have, but must, have its own temperature, which evidently cannot be absolute zero. Many methods have been tried to determine this temperature, but it is unnecessary to discuss them here. Suffice it to say that no one has found it less than -150° or above -40°; as a rule, the limits are taken as -100° and -60°. It is hopeless to expect any definite or exact data on this subject, and probably the temperature varies in different localities owing to radiation being different in different parts of space. Moreover, the value of tbetween -100° and -60° has hardly any significance in an approximate evaluation of x, as only the maximum value of x can be calculated by the expression (1); for there can be no question of any exact value, all that is required being to obtain an idea of the order in which x stands among the elements. We therefore take t = -80; then if a = 0.000367,

(II)     v = 2191 / sq. rt. x, or x = 4800000/v2

where x is the atomic weight of the gaseous element required, referred to hydrogen, and v the velocity of motion of its particles at -80° in meters/second.

This velocity must now be determined. We know that a body thrown up in the air falls back to earth, and in doing so describes a parabola. The height of its flight increases as its initial velocity is made greater, and it is evident that this velocity might be such that the body would pass beyond the sphere of the earth’s attraction, and fall on some other heavenly body, or rotate about the earth as a satellite by virtue of the laws of gravitation. It has been calculated that to do this the velocity of the body must exceed the square root of double the mass of the attracting body divided by the distance from its center of gravity to the point at which the velocity is determined.

The mass of the earth is calculated in absolute units from the mean radius of the earth ( = 6,373,000 meters) and the mean attraction of gravity at the surface of the earth ( = 9.807 meters), for the attraction of gravity is equal to the mass divided by the square of the distance (in this instance, the square of the earth’s radius), and therefore the mass of the earth — 398.1012, and the velocity sought for must therefore exceed 1,190 meters /second. Hence, according to Formula II, the atomic weight of such a gas must be less than 0.038 to enable it to escape freely from the earth’s atmosphere into space. All gases of greater atomic weight, not only hydrogen and helium, but even the gas y(coronium?), will remain in the earth’s atmosphere.

The mass of the sun is approximately 325,000, if that of the earth is taken as unity. Hence the absolute magnitude of the sun’s mass will be nearly 129.1018. The radius of the sun is 109.5 times greater than that of the earth, i.e., nearly 698.1016 meters. Hence only bodies or particles having a velocity of about 608,300 meters/second could escape from the surface of the sun. According to formula II, the atomic weight of a gas x having such a velocity will not be half this figure. Hence the atomic weight and density of such a gas which, like the ether, permeates space, must at all events be less than this figure. This is inevitable because there are stars of greater mass than the sun. This has been proved by researches made on double stars.

The most exact data we now possess concern Sirius, whose total mass (including that of its satellites) is 3.24 times that of the sun. To determine this, it was necessary to investigate not only the relative motion of both stars, but also the parallax of this system. In the case of Sirius it was possible to determine the ratio of the masses of the two stars. This was found to be 2.05, so that the mass of one star is 2.20, and that of the other 1.04 times that of the sun. In the following cases, only the total mass of the two twin stars was determined relative to that of the sun:

a-Centauri = 2.0 
70-Opiuchi = 1.6 
u-Cassiopeiae = 0.52 
61-Cygni = 0.34 
g-Leonus = 5.8 
g-Virginis = 32.7

The mass of B-Persei with its satellites is 0.67 times that of the sun, that of the star being twice that of its satellite. The triple star 40-Eridium has a mass 1.1 times that of the sun, the mass of the brightest star being 2.37 times that of the other two.

Leave a Reply