An Attempt Towards A Chemical Conception Of The Aether

It appears, therefore, that although there are some stars which are greater, and some which are less, still the mass of the sun is nearly the average of that of the other stars. For our purpose we need only consider the stars of much greater mass than the sun. That of the double star g-Virginis has a common mass about 33 times that of the sun. There is no reason for thinking that this is the maximum, and it will therefore be safer to infer that there may be stars whose mass exceed 50 times that of the sun, but I do not think it likely that a larger mass than this is in the nature of things. To complete our calculation it is also necessary to know the radius of the stars, about which we have no direct data. However, the composition and temperature of the stars may give a clue.

Spectrum analysis proves that the terrestrial chemical elements occur in the most distant heavenly bodies, and from analogy there seems no doubt that the general mass composition of these bodies is very similar in all cases; that is to say, that they are composed of a dense core surrounded by a less dense crust and an atmosphere which becomes gradually rarefied. Thus the composition of the stars probably differs but little from that of the sun.

Only at the core can the density differ much from that of the sun, but this cannot greatly affect the average density. Neither can the temperature of the stars differ greatly from that of the sun. Moreover, a rise of temperature would tend to increase the diameter of the star, and this would decrease the value of the velocity required by the gaseous particles to escape from the sphere of attraction. It appears, therefore, that for the purposes of our calculation the average density of the large stars may be taken as nearly that of the sun, and therefore that the radius of a star whose mass is n times that of the sun will be 3sq. rt. n times the radius of the sun. We now have all the data necessary for calculating the velocity required by gaseous particles to escape from the sphere of attraction of a star 50 times greater than the sun.

Its mass is 50.129.1018 or nearly 65.1029, and its radius nearly 698.106.3 sq. rt. of 50, or 26.108. Hence the velocity required will be nearly 2,240,000 meters/second, or 2,240 kilometers/second.

The great magnitude of this velocity, v, and its proximity to that of light (300,000,000 meters/second) provoke the following inquiry. How much must the mass of a heavenly body exceed that of the sun to retain on its surface particles endowed with a velocity of 3.103 meters/second, if its mean density were equal to that of the sun?

This may be calculated from the fact that if the mean density of the two luminaries be equal, the velocities of bodies able to escape into space from the spheres of attraction will stand in the ration of the cube roots of their masses, and therefore a luminary from whose surface particles endowed with a velocity of 300,00,000 meters/second could escape must have a mass 120,000,000 times that of the sun, for only particles having a velocityof 608,000 meters/second can escape from the sun, and this stands to 300,000,000 in the ratio of 1:493, and the cube of 493 is nearly 120,000,000.

But, so far we have no reason for admitting the existence of such a huge body, and therefore it seems to me that the velocity of the particles of our gas (ether) must, in order to permeate space, be greater than 2,240,000 meters/second and probably less that 300,000,000 meters /second.

Hence the atomic weight of x as the lightest elementary gas, permeating space and performing the part of the ether, must be within the limits (formula II) of 0.000,000,96 and 0.000,000,000,053, if that of H = 1.

I think it is impossible, under the present conditions of our scientific knowledge, to admit the latter value, because it would in some measure answer to a revival of the emission theory of light, and I consider that the majority of phenomena are sufficiently explained by the fact that the particles and atoms of the lightest element x capable of moving freely everywhere throughout the universe have an atomic weight nearly one millionth that of hydrogen, and travel with a velocity of about 2,250 kilometers/second.

When I was making these calculations, my friend Professor Dewar sent me his presidential address to the Belfast meeting of the British Association. In it he expresses the thought that the highest regions of the atmosphere, which are the seat of the aurora borealis, must be considered to be the province of hydrogen and of the argon analogs. This is only a few steps from the yet more distant regions of space and from the necessity of recognizing the existence of a still lighter gas capable of permeating and filling space and thus giving a tangible reality to the conception of the ether.

In conceiving the ether as a gas endowed with the above properties, and belonging to the zero group of elements, I desired before all to extract from the periodic law that which it was able to give and to tangibly explain the materiality and universal presence of an ethereal substance throughout nature, and also to explain its faculty of permeating all substances, gaseous, liquid and solid. The atoms of even the lighter elements forming the ordinary substances being several million times heavier than those of ether, they are not likely to be greatly influenced in their mutual relations by its presence.

Of course there are still many problems to be solved, but I think the majority are unfathomable, and I have no intention of raising them here or of trying to solve those which appear capable of being solved. My only purpose has been to state my opinion on a subject about which I know many are thinking and some are beginning to speak.

Without going into a further development of our subject, I should like to acquaint the reader with some, at first sight, auxiliary circumstances which guided my thoughts and led me to publish my opinions. These consist of a series of recently discovered physico-chemical phenomena which are not subject to the ordinary doctrines of science, and have cause many to return to the emission theory of light, or to accept the, to me, vague hypothesis of electrons, without trying to explain to the utmost the familiar concept of an ethereal medium transmitting luminous vibrations, &c. This more especially refers to radioactive phenomena.

I need not describe there most remarkable phenomena, assuming that the reader is more or less acquainted with them; and will only mention that a perusal of the literature of the subject, and what I saw in M. Becquerel’s laboratory and heard from him and Monsieur and Madame Curie, gave me the impression of some peculiar state proper chiefly (but not exclusively, just as magnetism is chiefly, but not exclusively, the property of iron and cobalt) to uranium and the thorium compounds.

As uranium and thorium, and also radium, judging from Madame Curie’s researches (1902), have the highest atomic weights (U=239, Th = 232, and Rd = 224) among the elements, they may be looked upon as suns, endowed with the highest degree of that individualized attractive capacity, a mean between gravity and chemical affinity, which is seen in the absorption of gases, solution, &c. By conceiving the substance of the ether as the lightest of gases, x, deprived, like helium and argon, of the power to form stable definite compounds, it need not be imagined that this gas is deprived of the faculty of, as it were, dissolving in or accumulating about large centers of attraction like the sun among heavenly bodies, or uranium and thorium in the world of atoms.

As a matter of fact, direct experiment proves that helium and argon are able to dissolve in liquids, and, moreover, to individualize this faculty according to either their own nature or that of the liquid and according to the temperature. If the ether is a gas, x, it must naturally accumulate from all parts of the universe towards the medium or mass of the sun, just as the gases of the atmosphere accumulate in a drop of water. And the lightest of gases, x, will also accumulate about the heaviest atoms of uranium and thorium, and perhaps change its form of motion like a gas dissolved in a liquid.

This will not be a definite act of combination, determined by a conformable harmonious motion, like the motion of a planet and its satellites, but an embryo of such a motion, resembling that of a comet in the region of heavenly individualizations, and it may be looked for sooner in the region of the heaviest atoms of uranium and thorium than in those of the lighter elements, just as a comet falling from space into the planetary system revolves round the sun and then once more escapes into space. If such a special accumulation of ether atoms about the molecules of uranium and thorium be admissible, they might be expected to exhibit peculiar phenomena, determined by the emission of a portion of this ether held by particles of normal mean velocity and by new ether entering into the sphere of attraction.

It seems to me that the optical and photo-radiant phenomena, not to mention the loss of electrical charges, indicate a material flow of something which has not been weighed, and it appears to me that they might be understood in this manner, for peculiar forms of the entrance and egress of ether atoms should be accompanied by such disturbances in the ethereal medium as give the phenomena of light. Monsieur and Madame Curie showed me the following experiment, for instance. Two small flasks were connected together by a lateral tube fused into their necks, and having a stopcock in the middle.

The cock being closed, a solution of the radioactive substance was poured into one of the flasks, while the gelatinous white precipitate of sulfide of zinc, shaken up in water, was placed in the other flask. Then both flasks were closed. So long as the cock between the flasks remained closed, nothing is visible in the dark; but directly as it is opened, the sulfide of zinc becomes brilliantly fluorescent and continues so as long as the tube connecting the flasks remains open.

This experiment gives the impression of an emissive flow of something material from the radioactive substance, and, in a sense, seems comprehensible if we assume that a peculiar refined ether gas, capable of exciting luminous vibrations, enters and passes off from the radioactive substance. Just as any kind of motion may be set up in a gas, not only by a solid piston, but also by the motion of another portion of the same gas, so also the phenomenon of light, i.e., a certain transverse vibration of the ether, may be produced not only by the molecular motion of particles of other bodies (by heating them or otherwise) bringing the ether from its state of mobile equilibrium, but also by a certain change in the motion of the ether atoms themselves; i.e., by their destroying their own equilibrium which may be caused in the case of radioactive bodies by the massiveness of the atoms of uranium and thorium, just as the luminosity of the sun may be, I think, due to its great mass being able to accumulate ether in far larger quantities than the planets, &c.

I think that the radio-luminous phenomena, i.e., such as proceed at right angles to the ray of the vibration of the ether medium,consisting of minute atoms in rapid motion, are, as a matter of fact, more complex than has hitherto been thought, chiefly owing to the fact that the velocity of the ether atoms is not very much less (180 times) than that f the propagation of their transverse vibrations. This at all events was the impression I acquired from the radioactive phenomena I saw, and I do not conceal it, although I consider it very difficult to form any opinion on this still dim province of the phenomena of light.

In conclusion, I may mention another class of phenomena, which led me to this conception of the ether. Dewar, about 1894, in his researches on the phenomena proceeding at low temperatures, observed that the phosphorescence of many substances, and especially of paraffin, becomes more intense at the temperature of liquid air (between -181° and -193°). Now, it appears to me that this is due to the fact that paraffin and such like substances have a great capacity for condensing the atoms of ether at very low temperatures. In other words, that the solubility (absorption) of the ether atoms in some bodies increases in extreme cold.

They therefore become more phosphorescent, for the vibrations of light are then set up in the phosphorescent substances, not only by their own atoms (having the property of illumination at their surface, of passing into a state of peculiar tension, which causes, when the act of illumination ceases, the ether to vibrate), but also by the atoms of ether which condense in these bodies and set up a rapid state of interchange with the surrounding medium.

It seems to me that this conception of ether, as a peculiar all-permeating gas, gives a means, if not of analyzing such phenomena, at all events of understanding their possibility. I do not regard my imperfect endeavor to explain the nature of ether from a chemical point of view as more than the expression of a series of thoughts which have arisen in my mind, and which I have given vent to solely from a desire that these thoughts, being suggested by facts, should not be utterly lost. Most probably similar thoughts have come to many, but unless they are enunciated they often pass away without being further developed.

If they contain a particle of that natural truth which we all seek, my effort will not have been in vain; it may then be worked out, embodied and corrected, and if my conception be proved false in its basis, it will prevent others from repeating it. I know of no other way for slow and steady progress. And even if it be found impossible to recognize in the ether the properties of the lightest, most mobile, and chemically inactive gas, still, if we keep to the realm of science, we cannot deny its substantiality, and this requires a search for its chemical nature. My effort is no more than a tentative answer to this primary question, and its one objective is to bring this question to the fore.

October 1902 

Leave a Reply